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In this paper, an updating technique that includes antiresonances in the de"nition of the
output residual is considered. Antiresonances are not a global system property, but are
typical of each frequency response function (FRF), thus allowing the residual vector to be
enlarged with data identi"ed from additional FRFs. However, antiresonance information is
not independent of mode shape information; it is rather an alternative, which is preferable
for several reasons. Antiresonances can be identi"ed from experimental FRFs with much less
error than mode shapes; furthermore, correlation between test and analysis antiresonances is
a good index of the correlation between test and analysis FRFs. In the implementation of the
technique, matching problems arise whenever antiresonances identi"ed from transfer FRFs
are used; unlike the situation for point FRFs, the distribution of antiresonances may be
signi"cantly altered by small changes in the structural model. Such problems may be
circumvented by restricting the experimental database to point FRFs; in this case, the
procedure is quite robust and excellent results are obtained, although it is necessary to plan
experimental testing di!erently from the usual modal testing, with possible impact on related
costs. For this reason, a procedure to deal with transfer FRFs by establishing a correlation
between test and analysis FRFs at antiresonances using frequency domain assurance
criterion (FDAC), is also evaluated. The procedure is not very robust and requires special
attention to give acceptable results.

( 2000 Academic Press
1. INTRODUCTION

Dynamic model updating can nowadays be considered a mature technology. Therefore, an
increasing need exists to develop robust updating procedures to be used by non-specialized
analysts and without stringent demands about the quality of experimental data, demands
that can be di$cult to meet outside the laboratory. In this context, methods based on the
minimization of the input residual (i.e., the dynamic imbalance at natural frequencies or at
any given frequency) such as the FRU-IT technique [1], lose some of their appeal. Although
they should in theory produce unbiased parameter estimates, in practice they require very
accurate frequency response functions (FRF) measurements, the selection of signi"cant and
consistent information by the analyst, and the use of sophisticated regularization
techniques. On the other hand, methods based on the minimization of the output residual
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(i.e., the di!erence between some experimental quantities (natural frequencies, mode shapes,
FRFs) and the corresponding model outputs) seem easier to use. However, the implicit
non-linearity and the uncertainties related to the estimation of the experimental output
quantities complicate the problem.

Among the output quantities usually considered, natural frequencies are identi"ed quite
accurately, whilst this is not the case for mode shapes (and also for measured FRFs). The
idea of introducing antiresonances among the output quantities follows naturally, because
they are similar to natural frequencies in many aspects. Like natural frequencies, they are
located along the frequency axis and can be identi"ed from experimental FRFs with small
amounts of error. Unlike natural frequencies, antiresonances are typical of each FRF;
therefore, it is possible to enlarge the experimental database by measuring more FRFs,
although the risk exists that some of the data obtained are non-independent. The use of
antiresonances in addition to natural frequencies and mode shapes was "rst suggested in
reference [2], but no implementation was attempted. Moreover, it was shown [3] that
antiresonance sensitivities are linear combinations of the eigenvalue and mode shape
sensitivities. Therefore, antiresonance information is an alternative to, and not additional
to, mode shape information, antiresonances being preferable because they can be identi"ed
with much less error than mode shapes.

Another reason for including antiresonances among the output quantities lies in their
importance as correlation indicators between test and analysis FRFs. The comparison of
test and analysis FRFs is commonly used to check the quality of the analytical/updated
model; if two FRFs have the same resonant peaks, but di!erent antiresonances, the
comparison is not satisfactory. Therefore, antiresonances directly a!ect the perceived
test-analysis correlation level, especially for lightly damped systems.

The use of antiresonances in dynamic model updating was considered in reference [4]. It
was pointed out that matching problems arise whenever antiresonances identi"ed from
transfer FRFs are used. In fact, unlike the situation for point FRFs, the distribution of
antiresonances may be signi"cantly altered by small changes in the structural model. Such
problems may be circumvented by restricting the experimental database to point FRFs.
Under this condition, the technique is quite robust and provides very good results, as is
demonstrated in the present paper. Furthermore, the technique is also interesting for
practical applications, at least when the number of parameters to be updated is limited to
some dozens, which is a reasonably high number even when large models are considered.

However, the restriction of the database to point FRFs requires experimental testing to
be planned di!erently from usual modal testing, with possible impact on related costs. To
cover this issue, a procedure for dealing with antiresonances identi"ed from transfer FRFs is
analyzed; the procedure establishes a correlation between test and analysis FRFs
at antiresonances using the concept of frequency domain assurance criterion (FDAC),
recently formalized in references [5, 6].

The formulation of the model updating problem using antiresonances is dealt with in
section 2, whilst an application using both simulated and experimental data is presented in
section 3.

2. FORMULATION OF THE MODEL UPDATING PROBLEM

2.1. MODELLING ERROR

In the present paper, the problems of updating the model geometry or the mesh size
are not considered explicitly. Therefore, the updated mass and sti!ness matrices are
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parametrically represented in the form
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selected from the FE model (at element, macro-element or sub-element level), or specially
developed to account for errors related to constraint and/or joint idealization. The
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are the incremental correction factor; they can be organized in a vector
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p
]1.

With respect to damping, it can be convenient to update the damping matrix at a later or
separate step [7] or even to introduce no damping related unknown [1]. In this case,
a proportional damping matrix C"a*M#b*K is de"ned, where the coe$cients a* and b*
are estimated to give a best "t with the identi"ed modal dampings.

2.2. UPDATING METHOD

The proposed technique belongs to the family of output residual techniques. In this case,
the di!erences between some of the experimental quantities y

Xi
(natural frequencies, mode

shapes, FRFs, antiresonances) and the corresponding model outputs y
i
are minimized. The

problem is strongly non-linear and several minimization strategies can be devised. Among
these, the inverse sensitivity approach is very simple and can be used when no bounds are
posed on the correction parameters. In this case, the problem is written as

y
X
"y#Sp or Sp"e, (2)

where e"y
X
!y is the error (or residual) vector and S is the sensitivity (or gradient) matrix,

whose ijth term is S
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. Both sides of equation (2) might be pre-multiplied by

a diagonal weighting matrix W"diag(w
i
) either to normalize the error vector (for instance

to consider the percentage error) or to account for uncertainties in the experimental data.
Without formal changes, equation (2) can be thought to include weighting, i.e.,
S
ij
"w

i
Ly

i
/Lp

j
and similarly on the right-hand side, leading to a weighted least-squares

solution. In order to control the parameter changes and ensure numerical stability,
equation (2) can be transformed to include a regularization term. Alternatively, numerical
stability can be enforced by limiting the step length at each iteration, i.e., by computing the
p values as

p(k`1)"p(k)#a(k)[S(k)]`e(k), k"0, 1,2, (3)

where ` denotes the generalized inverse and a(k) is a step length control parameter ()1). As
usual, the iteration is stopped as soon as DDp(k`1)!p(k)DD(e, where e is a small constant.

The step length control parameter a(k) can be chosen according to several criteria.

f to compensate for large DDe(k)DD at start;
f to limit the maximum component of Dp(k`1)!p(k)D;
f to limit the norm of (p(k`1)!p(k)).

2.3. RESIDUALS TO BE MINIMIZED

Typically, the residual vector considers natural frequencies and mode shapes. Whilst
natural frequencies can be identi"ed quite accurately, this is not true for mode shapes.



230 W. D'AMBROGIO AND A. FREGOLENT
Although lower weights can be assigned to inaccurate data, they still have a strong in#uence
on the solution because their number greatly exceeds that of accurate data.

Here it is proposed to substitute mode shape data with antiresonance data, which in
many cases can be identi"ed much more accurately. Note that it is not possible to consider
antiresonances and mode shapes together, since the two sets and their sensitivities are not
independent [3].

Therefore, the experimental database consists of the natural frequencies f
Xm

, m"1,

2, N
m
, and antiresonances z

Xr
, r"1,2N

r
, within a selected frequency range. Speci"cally,

N
r

includes all the antiresonances identi"ed from several measured FRFs. The residual
vector e, (N
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Accordingly, the sensitivity matrix S has dimension (N
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)]N
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. To obtain an

overspeci"ed problem, (N
m
#N

r
) must be greater than N

p
. Hopefully, this is obtained by

increasing N
r
, i.e., by increasing the number of measured FRFs.

Since natural frequencies and antiresonances are homogeneous quantities identi"ed with
similar amounts of error, there is no need to weight equations according to data inaccuracy.
Eventually, weights can be introduced to normalize the residual vector so that each term
represents the percentage deviation from the test data, being divided by the corresponding
experimental quantity. The weighting matrix W is therefore
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To implement the technique, some operations that are well established when natural
frequencies and mode shapes are used need to be extended to antiresonances. In practice, it
is necessary to

f compute the terms of the residual vector e related to antiresonances, which implies
* identi"cation of antiresonances from experimental FRFs;
* computation of antiresonances from the FE model;
* matching between test and analysis antiresonances;

f compute the sensitivities of antiresonances to the parameters p.
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2.3.1. Identi,cation of antiresonances from experimental FRFs

Antiresonances correspond to zeros of frequency response functions. They can be
observed as dips in the FRF magnitude, associated with a phase variation of #1803.
Accordingly, antiresonances can be identi"ed by picking such dips from the magnitude plot
of a given FRF, and by checking that the phase plot exhibits a related phase increase of
1803. Although this &&dip-picking'' technique (similar to the &&peak-picking'' technique for
resonances) is quite crude, the problem of identifying antiresonances has never been tackled
systematically and therefore dip-picking seems to be the most readily available technique.

In order to obtain distinct FRF dips from which the antiresonance values can be easily
identi"ed, the FRF estimator HK

1
"S

Fa
/S

F
, S

F
being the force power spectral density and

S
Fa

the force}acceleration cross-spectral density, is recommended. It yields good signal-to-
noise ratio around antiresonances. A drawback of HK

1
is the poor performance around

resonances due to the low force level produced by vibration exciters in this range. This
drawback can be tolerated because the identi"cation of natural frequencies is not so
sensitive to noise. In fact, several FRFs may be involved in the process, e.g., by using
a global curve-"tting technique. Moreover, if impact excitation is used, the force level is also
good around resonances; in this case, some care is necessary to ensure that the di!erent
impacts, which are required in the averaging process for the estimation of spectral densities,
always fall on the same location. In fact, antiresonances can move even for slight changes of
the impact location.

If distinct FRF dips are di$cult to obtain, a curve-"tting technique based on the rational
fraction polynomial representation of FRFs [8, 9] can be used. In this case, the numerator
and denominator polynomial coe$cients are identi"ed, and antiresonances are given by the
zeros of the numerator polynomial.

Using the dip-picking technique, errors in the estimation are mainly determined by the
frequency resolution of measured FRFs; for instance, if the frequency step is 1Hz,
a rounding error of $0)5Hz is possible. The kind of error can be easily kept below 1% by
choosing an appropriate frequency resolution; this amount of error is much lower than that
normally expected for mode shapes.

2.3.2. Computation of antiresonances from the FE model

For lightly damped systems, antiresonances are only slightly a!ected by damping.
Therefore, they can be obtained from the zeros of the undamped system, using only mass
and sti!ness properties.

Speci"cally, given l and m, the problem is to compute the zeros of the FRF term H
lm

(u).
The FRF matrix is the inverse of the dynamic sti!ness matrix:

H (u)"(K!u2M)~1"
adj (K!u2M)

det (K!u2M)
. (6)

By de"nition, the zeros of H
lm

(u) are those u for which the numerator of H
lm

(u) vanishes.
The numerator of H

lm
(u) is the lmth term of adj(K!u2M), and it is given by

(!1)l`mdet (Kl,m!u2Ml,m), where Kl,m and Ml,m are obtained from K and M after deleting
row l and column m. Therefore, the zeros are the values of u that satisfy

det (Kl,m!u2Ml,m)"0. (7)

The zeros can also be computed from the auxiliary eigenvalue problem

(Kl,m!jMl,m)u"0. (8)
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If l"m (point FRF), equation (8) also describes the eigenproblem of a di!erent physical
system obtained by grounding the lth degree of freedom of the original system. The
eigenvalues of the auxiliary system (the zeros of H

ll
(u)) interlace [10] the eigenvalues of the

original system (the poles), thus producing the typical appearance of point FRFs.
If lOm (transfer FRF), equation (8) no longer represents a physical vibrating system; the

problem is not self-adjoint and its eigenvalues can be negative or complex, giving rise to
complex zeros that must not be considered as antiresonances. Therefore, the number of
antiresonances in transfer FRFs is generally lower than in point FRFs. No interlacing
property [10] holds, which implies that antiresonances of transfer FRFs can be located at
any frequency.

The analytical antiresonance values, in Hz, are obtained from the eigenvalues of equation
(8) as

z
r
"

Jj
r

2n
. (9)

2.3.3. Matching between test and analytical antiresonances

Before updating, it is necessary to match the analytical and experimental quantities, i.e.,
to check that the output residual actually represents di!erences between consistently related
quantities (e.g., between the test and analysis natural frequency of the "rst #exural mode
and not merely between the lowest test-analysis natural frequency pair). When natural
frequencies and mode shapes are used, this can be accomplished through the modal
assurance criterion (MAC) [11]. Using antiresonances, a di!erent criterion must be
developed. The idea is to establish a correlation between test and analysis FRFs at
antiresonances.

A correlation coe$cient between measured FRFs and the corresponding column of the
analytical FRF matrix can be de"ned similarly to the MAC. This was done almost
independently by several researchers and di!erent names were assigned to very similar
quantities.

f Frequency response assurance criterion (FRAC) by Nefske and Sung [5], Ewins [12],
Fregolent and D'Ambrogio [13].

f Frequency domain assurance criterion (FDAC) by Pascual et al. [6], who call FRAC the
analogue of coordinate modal assurance criterion (COMAC).

Here the term FDAC will be used, according to the standard notation for modal testing.
The FDAC can be de"ned for each pair of frequencies as
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r
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where h and h
X

are column vectors containing analytical and measured FRFs, and the
superscript H denotes the conjugate transpose. The FDAC value is bounded between zero
and one, where a value of one indicates perfect correlation between the measured dynamic
de#ection shape and the dynamic de#ection shape of the model. To account for phase
information, a di!erent de"nition can be used [6, 12] which leads to FDAC values between
!1 and #1.

For antiresonance correlation, the FDAC can be evaluated by varying u
r
among the

analytical antiresonances z
r
of a given FRF H

lm
, and u

s
among the identi"ed antiresonances

z
Xs

of the test FRF H
Xlm

. Only antiresonance pairs whose FDAC is greater than a previously
established value are considered.
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Antiresonance matching is particularly important for transfer FRFs. In this case, the
interlacing property does not apply; the number of antiresonances within a given frequency
band and their location are a priori unknown. Therefore, experimental antiresonances
might be located di!erently from analytical ones. Furthermore, analytical antiresonances
can change signi"cantly each time the structural parameters are changed. This requires
a new matching at each iteration step.

On the other hand, antiresonance matching is not so critical for point FRFs: each
antiresonance lies between two natural frequencies due to the interlacing property. Once
natural frequencies are properly correlated, the correct matching between antiresonances is
easily found.

In order to circumvent matching problems, it could be desirable to restrict the
experimental database of point FRFs, i.e., to measure only FRFs on the main diagonal of
the FRF matrix rather than a row or column of the same matrix, as is usual in single
reference modal testing*where either the exciter or the response transducer is located in
a single position while measuring di!erent FRFs. To measure point FRFs both the exciter
and the response transducer must be located in the same position; they must be moved
before taking di!erent measurements, with a possible impact on testing time and cost. The
aforementioned disadvantage of restricting the experimental database to point FRFs is
compensated by the following advantages:

f all antiresonances are independent: as shown by equation (8), they correspond to the
natural frequencies of several distinct physical systems, each one obtained by grounding
a di!erent d.o.f. of the original system;

f for a "xed number of FRFs, the number of involved antiresonances is maximum and does
not change from one iteration step to another;

f no doubt exists as to whether a dip in the FRF magnitude is an antiresonance or
a minimum, whether or not the detection of the associated phase jump is hidden by noise,
since the correct answer is always provided by the interlacing property.

2.3.4. Computation of antiresonance sensitivities

In view of equation (9), the derivative Lz
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where Lj
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s
, i.e., the derivative of an eigenvalue of the generally non-self-adjoint system

given by equation (8), is computed following Plaut and Huseyin [14]:
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in which v
r
and u

r
denote the left and right eigenvectors of problem (8) and the superscript

H denotes the conjugate transpose. It is obvious that v
r
"u

r
if equation (8) represents

a self-adjoint system (point FRFs).
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3. APPLICATION

Figure 1 shows a sketch of a frame structure previously built and tested in the laboratory
[1]. The frame is assembled from 10 steel bars with hollow rectangular cross-section (right),
connected by welded joints. The long side of the section is orthogonal to the plane of the
structure. The bottom and top longerons (nodes 1}6 and 8}11) are made up of single
continuous bars, welded to the remaining structural members. Due to welding, there are
signi"cant uncertainties about structural properties. It can be expected that an FE model
assuming ideal junctions does not correctly describe the dynamic behaviour of the test
structure.

Vibration in the frequency range 0}800Hz, out of the plane of the frame (z direction)
is considered. Consequently, the structure is modelled as a three-dimensional (3-D)
frame, using 3-D (12 d.o.f.s) beam elements. The Young modulus E, the Poisson ratio l and
the mass density o are taken as E"2)1]1011N/m2, l"0)3 and o"7800 kg/m3,
while cross-sectional area A, area moments If, Ig, and torsional moment I

t
are

computed as A"2)24]10~4 m2, Ig"3)668]10~8 m4, If"1)438]10~8 m4 and
I
t
"3)342]10~8 m4.
To select an appropriate FE mesh, a convergence test is performed on the eigenfrequencies

of the model. These are computed by subdividing the frame into 16, 32 and 160 elements,
yielding [1] three sets of nearly identical eigenfrequencies below 800Hz; therefore, the
coarser mesh, consisting of 16 elements and shown in Figure 1, is used.

In all the subsequent cases, the mass matrix is assumed to be correct. Therefore, only
the sti!ness matrix is updated. The sti!ness correction factors refer to subelement
matrices related to the out-of-plane dynamics, which includes torsional and out of plane
#exural rigidity. Unless otherwise stated, all the elements will be updated; therefore
N

p
"N

p2
"16.

First, it will be demonstrated that signi"cant alterations in the distribution of
antiresonances can be produced by small changes in the model of the structure.

3.1. ANTIRESONANCE CHANGES IN TRANSFER FRFs

With reference to the frame structure of Figure 1, an original and perturbed set of sti!ness
correction factors (the norm of their di!erence is about 3%) is shown in Figure 2.

Figure 3 shows the transfer FRF H
65

is the two cases: two new antiresonances (between
the second and the third natural frequency, and between the third and the fourth one) can be
noticed on the perturbed FRF (right). (Note that the 3rd dip of the original FRF (left) is just
a minimum, as it is concluded from the phase plot.)
Figure 1. Test structure: nodes, elements (circled), welded joints (triangles). Bar cross-section (right).



Figure 2. Sti!ness correction factors: the perturbed set (dashed) is obtained by rounding the original values
(solid) to one decimal digit.

Figure 3. Transfer FRF H
65

: (left) using the original sti!ness correction factors; (right) using the perturbed
correction factors.
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3.2. SIMULATED TESTS

The purpose of simulated test is twofold. Firstly, it is to check that the updating
procedure provides correct answers in ideal conditions. Secondly, it is to analyze the
in#uence of some expected errors and limitations of experimental data, such as dealing with
a limited number of FRFs and with identi"cation errors on natural frequencies and
antiresonances. The same kind of disturbances can be introduced in a controlled manner
during simulations.

Simulated data are produced from the unperturbed sti!ness correction factor kX
i

shown in the solid line in Figure 2. Two types of tests are conducted: one considering point
FRFs only, i.e., the main diagonal of the FRF matrix; the second one using a traditional set
of measurements, i.e., a column of the FRF matrix. In the above frequency range and
direction, six natural frequencies of the system and six antiresonances for each point FRF
are found.
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3.2.1. Point FRFs

Table 1 shows the characteristics of the di!erent data sets used for simulations with point
FRFs. Two kinds of controlled disturbances are considered. One consists of using a limited
number of FRFs for antiresonance identi"cation; this is related to the typical limited
availability of experimental data. For this reason, data sets 2, 4 and 6 consider only six over
12 point FRFs, namely those involving nodes 1}6. The second kind of disturbance consists
of assuming that FRFs are only known at discrete frequency points separated by a
frequency step Df, as in actual tests. It is also assumed that natural frequencies and
antiresonances are identi"ed by peak-picking and dip-picking; i.e., their values are
estimated by rounding to the nearest multiple of Df. In data sets 3 and 4 Df"1Hz, whilst in
data sets 5 and 6 Df"2)5Hz. Note that natural frequencies and antiresonances are exact to
the fourth decimal digit in data sets 1 and 2.

Results provided by the updating technique are summarized in Table 2. To improve
numerical stability, the step length control parameter a(k), equation (3), is set to 0)1, 0)2, 0)5
in the "rst three iterations to compensate for large DDe(k)DD, and it is set to 1 in the subsequent
steps. The results are shown as percentage errors on the sti!ness correction factors. This is
only possible with simulated data, since in this case the true values of the correction factors
kX
i

are known.
Data set 1 represents an ideal situation and results are expected to be almost perfect. The

same holds for data set 2, because the number of data points (6 natural frequencies #36
antiresonances) is large enough to estimate 16 unknowns.

Results obtained using data sets 3 and 4 are extremely satisfactory too. Due to the
round-o! errors on natural frequencies and antiresonances, the availability of a larger data set
slightly improves the results. The error on the estimated parameters is of the same order of
magnitude as the inaccuracy on the input data; no signi"cant error ampli"cation is observed.

Satisfactory results are obtained even in the worst case (data set 6), when using only
six-point FRFs and a frequency step of 2)5Hz. The error on the sti!ness correction factors is
less than 7%. However, a coarse frequency resolution should generally be avoided.

3.2.2. ¹ransfer FRFs

When simulated tests are conducted using a column of the FRF matrix, the procedure
used above for point FRFs, i.e., without antiresonance matching at each iteration, never
TABLE 2

Relative error E
k
"DDk!kXDD/DD1#kXDD on sti+ness correction factors using di+erent data sets

Data set number 1 2 3 4 5 6

E
k
(%) 2)55e!4 2)90e!4 1)9 2)57 3)9 6)71

TABLE 1

Data sets for simulations with point FRFs

Data set number 1 2 3 4 5 6

No. of point FRFs 12 6 12 6 12 6
Df (Hz) * * 1 1 2)5 2)5
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achieves convergence. This occurs in spite of using exact values of natural frequencies and
antiresonances, and of constraining the sti!ness correction factors k to change very slowly
by selecting a(k) in order to limit severely the maximum component of Dk. Moreover,
convergence is not achieved even if the initial estimate of the parameters k

i
, instead of being

zero, is very close to their exact values. Lack of convergence is obviously due to the use of
uncorrelated quantities in the output residual. The interlacing property does not hold for
transfer FRFs and the antiresonance distribution can change signi"cantly when the
parameters change during the iteration procedure.

It then becomes necessary to correlate the experimental and the analytical antiresonances
using FDAC before each iteration step. Nevertheless, in this case, the correlation is not
su$cient to ensure convergence unless the initial estimate of the parameters k

i
is very close

to their true values. Since this condition cannot be guaranteed in practical situations,
a possibility is to reduce the number of structural parameters to be updated. Several
parameter selection techniques exist, based on the properties of the sensitivity matrix, but
none of them provides useful answers in the case considered. A further possibility is to
discard the parameters that tend to diverge (i.e., those attaining physically meaningless
values during the iteration procedure) to restart the procedure and to repeat the process
until convergence is achieved. In this manner, only the sti!ness parameters related to the
elements 2, 3, 4, 6, 8, 9, 10 and 12 are selected, and the procedure converges with an error of
9)7% on structural parameters, mainly due to the uncorrected parameters 1, 5, 7, 11, 13, 14,
15 and 16, and an average error of 0)5% on natural frequencies and antiresonances. If on the
contrary, parameters are arbitrarily selected, i.e., by ascribing the uncertainties due to the
welded joints only to the vertical elements 6, 12, 13, 14, 15 and 16, the solution does
not diverge, but shows an oscillating behaviour. Probably in this case the correlated
antiresonances are di!erent at subsequent iteration steps giving rise to cyclically di!erent
sets of equations. To avoid such situations, it should be required that the correlated set of
antiresonances at a given iteration is maintained or possibly enlarged when going to the
next iteration, i.e., without losing previously correlated antiresonances.

3.3. EXPERIMENTAL TESTS

Experimental data are obtained by measuring the 12-point FRFs in the z direction using
impact excitation. As recommended previously, FRFs are estimated using HK

1
"S

Fa
/S

F
. The

sampling frequency and number of samples are adjusted to get a frequency step Df"1Hz.
A column of the FRF matrix, corresponding to drive point 6, is also measured under the
same conditions.

Natural frequencies can be identi"ed from the experimental FRFs. In the frequency range
considered, six natural frequencies are found (one repeated value at 388 Hz). By comparing
them with analytical natural frequencies (Table 3) it can be concluded that dynamic model
updating is necessary.
TABLE 3

Comparison between analytical and experimental natural frequencies before updating

Natural frequencies

Analytical (Hz) 134)0 170)2 367)1 412)0 690)4 736)9
Experimental (Hz) 145)0 170)0 388)0 388)0 661)0 703)0
Error 7)60% !0)13% 5)38% !6)19% !4)45% !4)78%
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3.3.1. Point FRFs

In this case, the model is updated using antiresonances identi"ed from point FRFs. Six
antiresonances are found for each point FRF (one of them at 388 Hz). The overall number
of data is 6#6]12"78. Therefore, it is possible to establish 78 equations in the 16
unknown sti!ness correction factors.

The results are summarized in Figure 4 in terms of "nal errors on natural frequencies and
antiresonances. Considering absolute values, the maximum error on natural frequencies is
about 0)6% and the average error is around 0)2%, whilst for antiresonances the maximum
error is about 2% and the average error is around 0)5%. These results are quite satisfactory,
also considering that the average error was around 5% before updating, both for natural
frequencies and antiresonances.

The quality of the updated model can be appreciated also by comparing original, test and
updated FRFs (Figure 5). For the computation of updated FRFs, a proportional viscous
damping matrix C"a*M#b*K is used, with a*"6)3 and b*"2)2]10~7 estimated to
give a best "t of the identi"ed modal dampings. The comparison concerns six FRFs. Just
one of them is a point FRF (H

66
, Figure 5(f )), whose antiresonances are explicitly

considered by the updating procedure. Transfer FRFs are compared as an independent
check of the quality of the results, since their antiresonances are not explicitly updated. It
can be noted that the correspondence is always very good, except for H

65
; in this case the

updated model produces two new antiresonances in the frequency range 300}400 Hz.
However, this does not necessarily imply large errors in the updated parameters; it was in
fact observed (Figures 2 and 3) that the antiresonance distribution of H

65
was signi"cantly

changed by perturbing the parameters of about 3%. Therefore, it seems that the distribution
of antiresonances of H

65
is particularly sensitive to small parameter changes. The observed

discrepancy can be ascribed to this fact rather than to substantial errors in the updated
parameters or to the choice of non-physical parameters.

Finally, the updated sti!ness correction factors are shown in Figure 6, compared with the
sti!ness correction factors obtained for the same structure [1] using a di!erent updating
technique (the FRU-IT technique), and a di!erent set of measurements (a column of the
FRF matrix corresponding to drive point 6, obtained using random excitation and the
HK

2
estimator). In both cases, the updated sti!ness of the vertical elements 6 and 12 is much

smaller than the one originally estimated considering ideal junctions; this large variation is
probably due to welding faults. Also, the sti!ness of the other vertical elements (13}16) is
Figure 4. Final errors on natural frequencies (left) and antiresonances (right) using antiresonances identi"ed
from point FRFs.



Figure 5. FRFs: original (!!!), test (22) and updated (**). (a) H
61

; (b) H
62

; (c) H
63

; (d) H
64

; (e) H
65

;
(f) H

66
.
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slightly decreased, even if some oscillation is noticed in the parameters updated using
antiresonances (elements 13 and 16). Similarly, a slight sti!ness decrease is shown by the
slanted elements 7 and 11; for the last element, the decrease is larger when using the FRU-IT
procedure, but this decrease is compensated by the increase of the adjacent element 10. For



Figure 6. Sti!ness correction factors: (left) updated using the present technique; (right) previously obtained using
the FRU-IT technique and a di!erent set of measurements.
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the remaining elements, sti!ness variations are of minor importance. Notwithstanding the
similarities, the two sets of sti!ness correction factors are di!erent: the discussion about the
uniqueness of the updated model could proceed inde"nitely. However, it should be recalled
that the compared results are obtained not only from di!erent updating techniques, but also
from di!erent sets of measurements (point FRFs versus single reference modal testing, and
impact excitation versus random excitation). It is enough to say that the identi"ed natural
frequencies are slightly di!erent in the two cases!

3.3.2. ¹ransfer FRFs

In this case the model is updated using antiresonances identi"ed from the column of the
FRF matrix corresponding to drive point 6. The number of identi"ed antiresonances is 45
(12 of which are at 388 Hz) versus 72 when point FRFs were used. The overall number of
data is 6#45"51, giving rise to a maximum of 51 equations in 16 unknown parameters.

Obviously, the actual number of equations depends on the matching quality between
analytical and experimental antiresonances. If some antiresonances remain unmatched after
using FDAC, the number of usable data is lower.

In spite of using FDAC, convergence is not achieved unless the number of parameters to
be updated is restricted through some parameters selection procedure, as in simulated tests.
However, in this case the strategy of discarding the parameters that tend to diverge does not
provide acceptable results. Better results are obtained by arbitrarily selecting the
parameters on a presumed physical basis. Information from simulated tests is combined
with that about uncertainties due to welded joints, leading to selection of the sti!ness
parameters of elements 2, 3, 4, 6, 8, 9, 10, 12.

The results are summarized in Figure 7 in terms of "nal errors on natural frequencies and
antiresonances. Considering absolute values, the maximum error on natural frequencies is
1)83% and the average error is 0)49%, whilst for antiresonances the maximum error is
about 4)51% and the average error is 0)85%. At the end of the process, all the 45
antiresonances are matched, whilst they were only 30 at the beginning.

If elements 7 and 11 are added to the previous set, convergence is achieved with
more di$culty. The maximum error on natural frequencies is 1)74% and the average
error is 0)48%, whilst for antiresonances the maximum error is about 4)39% and the
average error is 0)96%. Apparently, results are better than in the previous case but now, at



Figure 7. Final errors on natural frequencies (left) and antiresonances (right) using antiresonances identi"ed
from transfer FRFs.
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the end of the process, only 39 antiresonances are matched. Therefore large invisible errors
are present.

By considering the results of simulated and experimental tests for transfer FRFs, it is
concluded that a general rule to perform parameter selection cannot be identi"ed and this
task must be developed on a case-by-case basis.

4. CONCLUSION

The use of antiresonances in the dynamic model updating of lightly damped structures
seems to satisfy several demands. In fact, a good correlation between analytical and
experimental antiresonances is of paramount importance in order to ensure the quality of
dynamic models. On the other hand, the information provided by antiresonances is not
independent of modal data, but antiresonances can be preferred to mode shapes because
they are identi"ed from experimental FRFs with much less error than the modes. Moreover,
analytical antiresonances and their sensitivities are easily computed from the FE model.

However, the distribution of antiresonances in transfer FRFs can be signi"cantly altered
by small changes in the structural model. During the updating process, this makes it di$cult
to compute correctly the output residual because of possible mismatches between
antiresonance pairs (test and analysis). One way to circumvent this problem is to restrict the
experimental database to point FRFs. (In this case, transfer FRFs can eventually be used for
the validation of the results.) Another approach consists of developing a procedure to deal
with antiresonances identi"ed from transfer FRFs. It attempts to match between test and
analysis antiresonances at each iteration, by using the frequency domain assurance criterion
to establish if their deformation shapes are well correlated or not.

The procedure using point FRFs is very robust and uses a complete set of information.
Moreover, for a "xed number of FRFs, the number of involved antiresonances is maximum
and it is maintained during the iteration process. However, point FRFs require
experimental tests to be planned di!erently from the usual modal testing, with possible
impact on the related costs.

The procedure using transfer FRFs is less robust than the one involving only point FRFs.
Some antiresonances can be ignored due to lack of correlation and, moreover, the set of
correlated antiresonances can be modi"ed during the iteration process.
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Results from both simulated and experimental data con"rm what was previously stated.
With reference to simulated data, when point FRFs are used, errors on the updated

parameters are of the same order as estimation errors on natural frequencies and
antiresonances. Numerical stability is not a!ected by the initial value of the parameters and
it is obtained without strictly limiting the step length at each iteration. On the contrary,
using transfer FRFs, the FDAC is not su$cient to ensure convergence unless the initial
estimate of the parameters is very close to their exact values, and in spite of strictly limiting
the step length at each iteration. In this case, it is necessary to restrict the number of
structural parameters to be updated.

Results obtained using antiresonances identi"ed from measured point FRFs are highly
satisfactory. The correlation between test and analysis FRFs is excellent both for point
and transfer FRFs, where antiresonances are not explicitly considered by the updating
procedure. The "nal values of the updated parameters can be interpreted as being due to
welding faults and are not dissimilar to those previously obtained using a di!erent
technique and a di!erent set of measurements. On the other hand, when using antiresonances
identi"ed from a measured column of the FRF matrix, it is again necessary to restrict the
number of parameters to be updated, but the selection must be performed on a case-by-case,
since no general rule can be identi"ed for this task.
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